PCEDC Parcel Data Visualization and Automation

Recommendations for Easy Data Management
Meet the Team

Samuel Glaser
Columbus, Ohio
MSIM
University of Washington

Dominique Rollins
Los Angeles, California
MSIM
University of Washington
AGENDA

01 PROJECT BACKGROUND
02 CURRENT STATE
03 IDEAL FUTURE STATE
04 CORE RECOMMENDATION
05 FEASIBILITY ANALYSIS
06 CONCLUSION
07 RESOURCES
<table>
<thead>
<tr>
<th>Icon</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>📊</td>
<td>Pacific County requires advanced data regarding the parcels of land they prioritize for development.</td>
</tr>
<tr>
<td>🎯</td>
<td>Previous UW LCY projects have helped the county organize land parcels, visualize data, and more.</td>
</tr>
<tr>
<td>🌐</td>
<td>Our goal is to help the PCEDC come to a penultimate approach to automating and visualizing their parcel database.</td>
</tr>
</tbody>
</table>
VISIT TO PACIFIC COUNTY

- We had the privilege of visiting Pacific County in person to understand firsthand Pacific County’s...
 - Parcel management process
 - Topography
 - Land evaluation process
- These experiences were critical to helping us understand this process
CURRENT STATE -
SYSTEMS OVERVIEW

DATA STORAGE
Data is added manually from Taxsifter, added to a shared Google Sheet.

VISUALIZATION
Current dashboard was built by UW Tacoma Analytics club, from a Tableau Public account.

PROCESS
Assessment process and Department of Community Development aren’t included in database.
CURRENT PROCESS FLOW

PARCEL IDENTIFICATION

Data is found on Taxsifter by PCEDC Employee, data entered in database.

EVALUATION

Parcel is evaluated by PCEDC for additional information, such as zoning, broadband, extra notes, etc.

DECISION MAKING

Wetland boundaries and water reports from the assessor are overlayed for a specific parcel, to then be assessed for development.
CURRENT STATE ANALYSIS - RISK ASSESSMENT

HUMAN ERROR
Data is currently being entered by hand without any kind of governance.

SEPARATED PROCESSES
Multiple sources of data known by some PCEDC employees is not represented in this data inventory or visualization.

UPDATE FREQUENCY
Data can become quickly outdated within the PCEDC inventory.

SECURITY/PRIVACY
Anyone with the PCEDC Inventory database can make changes or incorrect conclusions based on notes.

COMPATIBILITY
Data isn't organized with visualization in mind, or compatibility with other data sources.
IDEAL FUTURE STATE - SYSTEMS OVERVIEW

DATA INTERGRATION
Automate data integration using ArcGIS and Washington GODP for real-time access to State datasets.

EFFICIENCY
Increased data visualization, automated updates, and streamlined operations.

DECISION-MAKING
User-friendly interface with technical support. Dynamic testing for continuous system and operations improvement.
Automate the retrieval of parcel data, enhancing the accuracy and efficiency of data entry results.

DATA AUTOMATION

Implement automated processes for evaluation, ensuring consistency and thorough analysis of each parcel.

ENHANCED EVALUATION

Increased visual representation of data will enhance decision-making, promoting a more informed and efficient process for the PCEDC.

ENHANCED DECISION-MAKING
Ideal Future State Analysis

Risk Assessment

<table>
<thead>
<tr>
<th>Category</th>
<th>Risk Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tech Dependency</td>
<td>Potential system downtimes, tech glitches, or changes in the API structure may disrupt data access and processing, impacting the continuity of operations</td>
</tr>
<tr>
<td>Data Precision</td>
<td>Due to bi-weekly updates, there is a risk of inaccurate & outdated information leading to potential discrepancies in the evaluation and decision-making process</td>
</tr>
<tr>
<td>Cost Overruns</td>
<td>Unforeseen costs associated with licensing, maintenance, or additional support may lead to budget overruns</td>
</tr>
<tr>
<td>Security/Privacy</td>
<td>Unauthorized access or inadvertent sharing of sensitive information within the group could pose privacy risks</td>
</tr>
<tr>
<td>Documentation</td>
<td>Adequate documentation and knowledge transfer mechanisms must be put in place to mitigate the risk of knowledge loss</td>
</tr>
</tbody>
</table>
AGENDA

01 PROJECT BACKGROUND
02 CURRENT STATE
03 IDEAL FUTURE STATE
04 CORE RECOMMENDATION
05 FEASIBILITY ANALYSIS
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Cost</th>
<th>API?</th>
<th>Automatable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxesifter</td>
<td>The current searchable tool that visualizes the Pacific County Assessor’s Office tax data regarding parcels.</td>
<td>Free*</td>
<td>No</td>
<td>No</td>
<td>Taxesifter does not have a consumable API automatically.</td>
</tr>
<tr>
<td>Oxylabs Redfin Scraper API</td>
<td>Paid product enabling scraping of Redfin real estate data with customizable parameters.</td>
<td>$10-99 per month</td>
<td>Yes</td>
<td>Yes</td>
<td>While this can pull data from the open web, quality is a concern, and legality is a potential concern.</td>
</tr>
<tr>
<td>Washington Geospatial Open Data Portal</td>
<td>Washington State’s Geospatial data hub, refreshed monthly.</td>
<td>Free</td>
<td>Yes</td>
<td>Yes</td>
<td>Has a customizable API tool, data is refreshed commonly, high overlap of values with current Parcel db.</td>
</tr>
<tr>
<td>Department of Ecology Data</td>
<td>Has layers of water based data that can add value in deciding how to visualize applicable data.</td>
<td>Free</td>
<td>N/A</td>
<td>Yes</td>
<td>This information could be applied annually (if info is updated) for ecology layers of data.</td>
</tr>
</tbody>
</table>
Recommended Data Visualizations

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Cost</th>
<th>Supported?</th>
<th>Filters?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>QGIS</td>
<td>The largest free and open source Geographic Information System tool</td>
<td>Free</td>
<td>Yes</td>
<td>Yes</td>
<td>Can be added to a website via webclient, can take layers of data, filtering, and more customizable options.</td>
</tr>
<tr>
<td>ArcGIS</td>
<td>The industry standard for online mapping software, used by other property management groups.</td>
<td>$550/year, $100 for student</td>
<td>Yes</td>
<td>Yes</td>
<td>The best option for creating a visualization that is easily customizable, filtering, layers, and more.</td>
</tr>
<tr>
<td>Tableau</td>
<td>Free to use visualization platform, the current platform created by UW Tacoma Analytics club.</td>
<td>Free</td>
<td>Yes</td>
<td>No</td>
<td>Is the current solution, but is limited by not enabling filtering capabilities, takes effort to further customize, is not a platform directly suited for this use case.</td>
</tr>
</tbody>
</table>
RECOMMENDED DATA PROCESS

Data Source
Washington Geospatial Open Data Portal

PCEDC Parcel Data Base
Google Sheets, Microsoft Excel

Visualized Dashboard
Arc GIS

This Recommended Solution
While this solution enables free data to replace many of the fields found manually in Taxsifter, it enables an API to update new and existing listings without intervention, with a powerful visualization tool that enables the PCEDC to customize their solution.

Total Estimated Cost
Software - $100/year
LCY Project - $0
ADDITIONAL SOURCES OF DATA

Primary Data Source
Washington Geospatial Open Data Portal

Secondary Data Source(s)
Wetland Data (NOAA, Dept. of Ecology)

This Recommended Solution
By adding wetland data from outside sources like NOAA or the Washington Dept. of Ecology, you can add layers of information centralizing analysis in one dashboard, with a manual addition once a year, or everytime the data is updated.

Total Estimated Cost
- Software - $100/year
- LCY Project - $0
Data enters Parcel Database

Assessor determines usability of land

Assessor/Community Development adds context

Parcel is marked done by PCEDC employee and prioritized

Data will be added to the database via an automatically running API to insert information.

Assessors will go out to properties, and determine land developability, placement of water/sewage, and wetland encroachment.

Either the assessor or the Department of Community Development will add information into the PCEDC database, accessing via cloud, link, etc.

PCEDC employee will then evaluate the assessment and promote the parcel accordingly.

In general, the PCEDC needs to find a way to help coordinate efforts to get subjective information into the Parcel Inventory quickly, efficiently, and easily.
DATA SOURCE FIELD COVERAGE WITH NEW DATA RESOURCE

General Parcel Info (Automatic from Washington Geospatial)
Land Use, Parcel, Address, Land Value, Building Value, Acreage, Zoning, Housing Type

Qualitative Parcel Info (Manual from Taxsifter, Assessor, other Departments)
Property type, Owner type, Price, Notes, Utilities, Sewer, Water, lot width, lot depth, land influence

Other helpful data (Manual from NOAA, Washington Ecology)
Flood history, wetland boundary, shoreline info
RECOMMENDED DATABASE IMPROVEMENTS

Add a column that automatically assigns a score to a property based on logic.

Add a column that indicates the most relevant missing information (assessor, price, etc.)

Add a column to look at candidates for re-zoning, or different zoning (single family - multi-family, or commercial to residential)
AGENDA

01 PROJECT BACKGROUND
02 CURRENT STATE
03 IDEAL FUTURE STATE
04 CORE RECOMMENDATION
05 FEASIBILITY ANALYSIS
06 CONCLUSION
07 RESOURCES
Time will be given back to PCEDC Employees.

Centralized information means efficient data monitoring and higher quality.

For less than $200 in software (annually), the PCEDC could have a sophisticated experience rivalling larger counties.
COSTS ASSESSMENT

<table>
<thead>
<tr>
<th>Tangible</th>
<th>Intangible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low costs for higher quality parcel management process.</td>
<td>Process change comes with emotional labor</td>
</tr>
<tr>
<td>Time spent on refining parcel data means higher accuracy and less time</td>
<td>Data APIs could require additional monitoring and support.</td>
</tr>
<tr>
<td>spent on inaccurate data.</td>
<td></td>
</tr>
</tbody>
</table>
BENEFITS ASSESSMENT

<table>
<thead>
<tr>
<th>Tangible</th>
<th>Intangible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time added back to PCEDC employees days.</td>
<td>Sense of security that parcels being added doesn’t need to rely on a PCEDC employee.</td>
</tr>
<tr>
<td>High quality raw data that may not have been utilized before.</td>
<td>More transparent land value can be derived from better data.</td>
</tr>
<tr>
<td>Better visualizations to show to partners and stakeholders.</td>
<td>Less manual decision making will need to be made, and more decision making will be handled by data.</td>
</tr>
</tbody>
</table>
TECHNICAL ANALYSIS

Scalability:
Adjustments and enhancements can be made to ensure that the recommended solution can efficiently scale with the evolving needs of the PCEDC.

Compatibility:
Existing documentation and data-feed transfer ensure that the new system is accurately documented, and that knowledge is effectively transferred to mitigate the risk of information loss.

User Experience (UX):
Enhanced overall usability for PCEDC personnel and those who need access to the information.
OPERATIONAL ANALYSIS

Day-to-day Workflow Efficiency
Automating data entry and leveraging visualization tools streamline daily processes creating work efficiency

User-Friendly Interface
Ease of use so all stakeholders with access can utilize tool to its fullest capabilities

Scalability For Future Growth
Capacity to handle an increasing volume of data as well as adaptability for the evolving requirements
Pacific County’s economic future is dependent on the debates that are happening at the state level regarding the usage and allotments of land for development.

Laws restrict the county’s ability to develop, the knowledge of what laws will change the future of the PCEDC’s ability to develop available parcels around Pacific County is crucial.
The State of Washington is recommending the increase of developable land in surplus to account for population growth.

Numerous initiatives from groups at the state level make it challenging to prioritize growth while maintaining environmental and social initiatives.
AGENDA

01 PROJECT BACKGROUND
02 CURRENT STATE
03 IDEAL FUTURE STATE
04 CORE RECOMMENDATION
05 FEASIBILITY ANALYSIS
06 CONCLUSION
07 RESOURCES
Get LCY project to automatically add Geospatial information into repository via API, and add other pieces of information required by PCEDC.

Get LCY project to take PCEDC database and add it into QGIS or ArcGIS to visualize with layers for wetland and shoreline data.

Discuss with partners surrounding PCEDC how to get assessed information into one location, any qualitative info into parcel inventory.

Add columns to optimize efficiency in filtering through parcel information.
CONCLUSION

- Automated Transformation
- Operational Efficiency
- Strategic Processes Improvement
- Cost-Effective Solution
- Visualization
- Scalability
- Regulatory Knowledge/Consideration

We will send the following documents...

1. This slide deck (2/29)
2. Research document (3/3)
3. Developer document (3/10)
HELPFUL LINKS

QGIS – https://qgis.org/en/site/about/index.html

OxyLabs – https://oxylabs.io/products/scaper-api/real-estate/redfin

Department of Ecology – https://ecology.wa.gov/Research-Data/Data-resources/Geographic-Information-Systems-GIS/